Let X be a random variable which assumes value $x_1, x_2, x_3, x_4$ such that $2P(x=x_1)=3P(x=x_2)=P(x=x_3)= 5P(x=x_4), $ then Probability $P(x=x_3) $ will be |
$\frac{15}{61}$ $\frac{30}{61}$ $\frac{6}{61}$ $\frac{45}{61}$ |
$\frac{30}{61}$ |
The correct answer is Option (2) → $\frac{30}{61}$ The sum of probabilities is, $\frac{k}{2}+\frac{1}{3}k+k+\frac{k}{5}=1$ $\frac{61k}{30}=1$ $k=\frac{30}{61}$ |