Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

$\int\left(e^{\log x}+\sin x\right) \cos x d x$ is equal to

Options:

$x \sin x+\cos x-\sin ^2 x+c$

$x \cos x-\sin ^2 x+c$

$x \sin x+\cos x-\left(\cos ^2 x\right) / 2+c$

$x^2 \sin x+\cos x-\sin ^3 x+c$

Correct Answer:

$x \sin x+\cos x-\left(\cos ^2 x\right) / 2+c$

Explanation:

$e^{log x} = x$

$I=\int x \cos x d x+\int \sin x \cos x d x=x \sin x+\cos x-\frac{\cos ^2 x}{2}+c$

Hence (3) is the correct answer.