$\int\left(e^{\log x}+\sin x\right) \cos x d x$ is equal to |
$x \sin x+\cos x-\sin ^2 x+c$ $x \cos x-\sin ^2 x+c$ $x \sin x+\cos x-\left(\cos ^2 x\right) / 2+c$ $x^2 \sin x+\cos x-\sin ^3 x+c$ |
$x \sin x+\cos x-\left(\cos ^2 x\right) / 2+c$ |
$e^{log x} = x$ $I=\int x \cos x d x+\int \sin x \cos x d x=x \sin x+\cos x-\frac{\cos ^2 x}{2}+c$ Hence (3) is the correct answer. |