The maximum value of \( f(x) = \frac{1}{4x^2 + 2x + 1} \) is |
\( \frac{3}{4} \) \( \frac{4}{3} \) \( \frac{2}{3} \) \( \frac{1}{3} \) |
\( \frac{4}{3} \) |
The correct answer is Option (2) → \( \frac{4}{3} \) Given: $f(x) = \frac{1}{4x^2 + 2x + 1}$ Step 1: Complete the square in the denominator: $4x^2 + 2x + 1 = 4\left(x^2 + \frac{1}{2}x\right) + 1$ $= 4\left(x^2 + \frac{1}{2}x + \frac{1}{16} - \frac{1}{16}\right) + 1$ $= 4\left(\left(x + \frac{1}{4}\right)^2 - \frac{1}{16} \right) + 1$ $= 4\left(x + \frac{1}{4}\right)^2 - \frac{1}{4} + 1$ $= 4\left(x + \frac{1}{4}\right)^2 + \frac{3}{4}$ So: $f(x) = \frac{1}{4\left(x + \frac{1}{4}\right)^2 + \frac{3}{4}}$ Minimum value of denominator: occurs when $\left(x + \frac{1}{4}\right)^2 = 0$ Minimum = $\frac{3}{4}$ Maximum of $f(x)$: is $\frac{1}{\frac{3}{4}} = \frac{4}{3}$ |