The mean and variance of a binomial distributors are 4 and 2 respectively. Then the probability of atmost 2 successes is : |
$\frac{9}{256}$ $\frac{247}{256}$ $\frac{219}{256}$ $\frac{37}{256}$ |
$\frac{37}{256}$ |
The correct answer is Option (4) → $\frac{37}{256}$ For a binomial distribution B(n, p), the mean (μ) and variance $(σ^2)$ are given by, $μ=n.p$ ...(1) $σ^2=n×p×(1-p)$ ...(2) $np=4⇒p=\frac{4}{n}$ Simplify eqn (2) $n×\frac{4}{n}\left(1-\frac{4}{n}\right)=2$ $4\left(1-\frac{4}{n}\right)=2$ $1-\frac{4}{n}=\frac{1}{2}$ $⇒\frac{4}{n}=\frac{1}{2}$ $⇒n=8$ $∴P=\frac{4}{8}=\frac{1}{2}$ $P(X=0)={^8C}_0(0.5)^0(0.5)^8=\frac{1}{2^8}=\frac{1}{256}$ $P(X=1)={^8C}_1(\frac{1}{2})^1(\frac{1}{2})^7=\frac{8}{256}$ $P(X=2)={^8C}_2(\frac{1}{2})^2(\frac{1}{2})^6=\frac{28}{256}$ $∴P(X≤2)=\frac{37}{256}$ |