If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to : |
$\frac{1}{2\pi } unit $ $\frac{1}{\pi } unit $ $\frac{\pi }{2 } unit $ $\pi \, unit $ |
$\frac{1}{\pi } unit $ |
The correct answer is option (2) → $\frac{1}{\pi}$ unit from given question $\frac{d(Area)}{dt}=\frac{d(diameter)}{dt}$ $\frac{d(πr^2)}{dt}=\frac{d(2r)}{dt}⇒2πr\frac{dr}{dt}=2\frac{dr}{dt}$ $⇒π=\frac{1}{r}$ |