\(\int \frac{\log x}{x^{2}}dx\) is equal to |
\(\frac{1}{2}\left(\log x+1\right)+C\) \(-\frac{1}{x}\left(\log x+1\right)+C\) \(\frac{1}{x}\left(\log x+1\right)+C\) \(\frac{1}{x}\left(\log x-1\right)+C\) |
\(-\frac{1}{x}\left(\log x+1\right)+C\) |
\(\int \frac{\log x}{x^{2}}dx=\frac{-\log x}{x}+\int\frac{1}{x^2}dx\) $=\frac{-\log x}{x}-\frac{1}{x}+C$ $=-\frac{1}{x}(\log x+1)+C$ |