Tritium has a half life of 12.5 years against beta decay. What fraction of a sample of pure tritium disintegrates in 25 years? |
$\frac{1}{4}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{1}{3}$ |
$\frac{3}{4}$ |
The correct answer is Option (3) → $\frac{3}{4}$ Radioactive decay, $N(t)=N_0\left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$ $N(t)$ = Amount of tritium remaining after time t $N_0$ = Initial amount of tritium $T_{1/2}$ = Half life of substance $N(25)=N_0\left(\frac{1}{2}\right)^{\frac{25}{12.5}}$ $N(25)=N_0×\frac{1}{4}$ ∴ Fraction disintegrated = $1-\frac{N(25)}{N_0}=1-\frac{1}{4}=\frac{3}{4}$ |