$\int\frac{\sqrt{16+(\log x)^2}}{x}dx$ is equal to (where C is an arbitrary constant) |
$2\log\left|\log x + \sqrt{16+(\log x)^2}\right| + \log x\sqrt{16+(\log x)^2} + C$ $16\log\left|\log x + \sqrt{16+(\log x)^2}\right| +\frac{\log x}{2}\sqrt{16+(\log x)^2} + C$ $8\log\left|\log x + \sqrt{16+(\log x)^2}\right| +\frac{\log x}{2}\sqrt{16+(\log x)^2} + C$ $4\log\left|\log x + \sqrt{16+(\log x)^2}\right| +\frac{\log x}{2}\sqrt{16+(\log x)^2} + C$ |
$8\log\left|\log x + \sqrt{16+(\log x)^2}\right| +\frac{\log x}{2}\sqrt{16+(\log x)^2} + C$ |
The correct answer is Option (3) → $8\log\left|\log x + \sqrt{16+(\log x)^2}\right| +\frac{\log x}{2}\sqrt{16+(\log x)^2} + C$ Evaluate the integral: $\int \frac{ \sqrt{16 + (\log x)^2} }{x} \, dx$ Step 1: Use substitution Let $\log x = t \Rightarrow dx = x \, dt \Rightarrow \frac{dx}{x} = dt$ So the integral becomes: $\int \sqrt{16 + t^2} \, dt$ Step 2: Use standard integral $\int \sqrt{a^2 + t^2} \, dt = \frac{t}{2} \sqrt{t^2 + a^2} + \frac{a^2}{2} \log \left| t + \sqrt{t^2 + a^2} \right| + C$ Here, $a = 4$, so: $\int \sqrt{16 + t^2} \, dt = \frac{t}{2} \sqrt{t^2 + 16} + \frac{16}{2} \log \left| t + \sqrt{t^2 + 16} \right| + C$ $= \frac{t}{2} \sqrt{t^2 + 16} + 8 \log \left| t + \sqrt{t^2 + 16} \right| + C$ Step 3: Substitute back $t = \log x$ Final answer: ${ \frac{\log x}{2} \sqrt{ (\log x)^2 + 16 } + 8 \log \left| \log x + \sqrt{ (\log x)^2 + 16 } \right| + C }$ |