The simplest form of $\tan ^{-1}\left\{\frac{x}{\sqrt{a^2-x^2}}\right\}$ is, where -a < x < a. |
$\tan ^{-1} \frac{x}{a}$ $\tan ^{-1}(a x)$ $a \tan ^{-1} \frac{x}{a}$ $\sin ^{-1} \frac{x}{a}$ |
$\sin ^{-1} \frac{x}{a}$ |
$y=\tan ^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$ Let x = a sin θ so $\frac{x}{a} = sin θ ⇒ \theta=\sin ^{-1}\left(\frac{x}{a}\right)$ $y=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^2-a^2 \sin ^2 \theta}}\right) \Rightarrow y=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^2} \sqrt{1-\sin ^2 \theta}}\right)$ $y=\tan ^{-1}\left(\frac{a}{a} \frac{\sin \theta}{\sqrt{\cos ^2 \theta}}\right)$ as $\sin ^2 \theta \cos ^2 \theta=1$ $\cos ^2 \theta=1-\sin ^2 \theta$ $y=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)=\tan ^{-1}(\tan \theta)$ $y=\theta=\sin ^{-1}\left(\frac{x}{a}\right)$ |