If time taken for a first order reaction to get \(90\%\) complete is \(24\, \ min\), its \(t_{99.9\%}\) will be: |
240 min 48 min 120 min 72 min |
72 min |
The correct answer is option 4. 72 min. We know, for a first order reaction, \(k = \frac{2.303}{t}log\frac{a}{a - x}\) ------(1) For \(90\%\) completion of the reaction Given, \(t_{90\%} = 24\, \ min\) Let, \(a = 100\) then \(a - x = 100 - 90 =10\) Applying these values in the equation (1), we get \(k = \frac{2.303}{24}log\frac{100}{10}\) \(⇒ k = \frac{2.303}{24}log (10)\) \(⇒ k = \frac{2.303}{24}\) Now, for \(99.9\%\) of the reaction, \(a - x = 100 - 99.9 = 0.1\) Thus, equation (1) can be written as \(k = \frac{2.303}{t_{99.9\%}}log\frac{100}{0.1}\) \(⇒ \frac{2.303}{24} = \frac{2.303}{t_{99.9\%}} log (1000)\) \(⇒ \frac{2.303}{24} = \frac{2.303}{t_{99.9\%}} \times 3\) \(⇒ t_{99.9\%} = \frac{2.303 \times 24 \times 3}{2.303}\) \(⇒ t_{99.9\%} = 72\, \ min\) |