The electirc field intensity at a distance of 20 cm from the centre of a small conducting sphere is $1.5 × 10^3\, NC^{-1}$ and is directed towards the sphere. The charge on the sphere is |
+ 3.3 nC - 6.6 nC - 3.3 nC zero |
- 6.6 nC |
The correct answer is Option (2) → - 6.6 nC Given: $E = 1.5 \times 10^{3} \, N/C$ $r = 20 \, cm = 0.20 \, m$ $\varepsilon_0 = 8.85 \times 10^{-12} \, C^2 N^{-1} m^{-2}$ Formula: $E = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q}{r^2}$ Rearranging: $Q = E \cdot 4 \pi \varepsilon_0 r^2$ Substitute: $Q = (1.5 \times 10^{3})(4 \pi \times 8.85 \times 10^{-12})(0.20)^2$ $Q = 6.67 \times 10^{-9} \, C$ Answer: $Q = 6.67 \times 10^{-9} \, C$ |