The value of $\begin{vmatrix}265&240&219\\240&225&198\\219&198&181\end{vmatrix}$ |
5 -4 0 1 |
0 |
The correct answer is Option (3) → 0 To evaluate the determinant of the matrix: $ \begin{vmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{vmatrix} $ Step 1: Expand along the first row $ D = 265 \cdot \begin{vmatrix}225 & 198 \\ 198 & 181\end{vmatrix} - 240 \cdot \begin{vmatrix}240 & 198 \\ 219 & 181\end{vmatrix} + 219 \cdot \begin{vmatrix}240 & 225 \\ 219 & 198\end{vmatrix} $ Step 2: Evaluate each 2×2 determinant $ \begin{vmatrix}225 & 198 \\ 198 & 181\end{vmatrix} = 225 \cdot 181 - 198 \cdot 198 = 40725 - 39204 = 1521 $ $ \begin{vmatrix}240 & 198 \\ 219 & 181\end{vmatrix} = 240 \cdot 181 - 198 \cdot 219 = 43440 - 43362 = 78 $ $ \begin{vmatrix}240 & 225 \\ 219 & 198\end{vmatrix} = 240 \cdot 198 - 225 \cdot 219 = 47520 - 49275 = -1755 $ Step 3: Plug in all values $ D = 265 \cdot 1521 - 240 \cdot 78 + 219 \cdot (-1755) $ $ D = 403065 - 18720 - 384645 = 0 $ |