Let $y=log_e\left(\frac{a+bsinx}{a-bsinx}\right),$ then value of $\frac{dy}{dx}$ is : |
$\frac{abcos x}{a^2-b^2sin^2x}$ $\frac{abcos x}{a^2+b^2sin^2x}$ $\frac{asin x}{a^2-b^2sin^2x}$ $\frac{2abcos x}{a^2-b^2sin^2x}$ |
$\frac{2abcos x}{a^2-b^2sin^2x}$ |
The correct answer is option (4) → $\frac{2ab\cos x}{a^2-b^2\sin^2x}$ $y=\log_e\left(\frac{a+b\sin x}{a-b\sin x}\right)$ $\frac{dy}{dx}=\frac{a-b\sin x}{a+b\sin x}\frac{(b\cos x(a-b\sin x)+b\cos x(a+b\sin x))}{(a-b\sin x)^2}$ $=\frac{2ab\cos x}{a^2-b^2\sin^2x}$ |