If $∫(\sqrt{x+1}+(\sqrt{x-1})^2dx=ax^2+βx(\sqrt{x^2-1}+γlog|x+\sqrt{x^2-1}|+C$, then value of $α+β+2γ$ is: |
-1 0 1 6 |
0 |
The correct answer is Option (2) → 0 $∫(\sqrt{x+1}+(\sqrt{x-1})^2dx=ax^2+βx(\sqrt{x^2-1}+γ\log|x+\sqrt{x^2-1}|+C$ $∫(2x+2\sqrt{x^2-1})dx=2∫x+\sqrt{x^2-1}dx$ $=2\left[\frac{x^2}{2}+\frac{x}{2}\sqrt{x^2-1}-\frac{1}{2}\log|x+\sqrt{x^2-1}|\right]+C$ $=x^2+x+\sqrt{x^2-1}-\log|x+\sqrt{x^2-1}|+C$ Matching with the given equation, $α=1,β=1,γ=-1$ $∴α+β+2γ=1+1-2=0$ |