The semi vertical angle of a right circular cone of maximum volume of a given slant height is |
$\tan^{-1}2$ $\sin^{-1}(\frac{1}{3})$ $\cos^{-1}(\frac{1}{\sqrt{3}})$ $\sin^{-1}(\frac{1}{\sqrt{3}})$ |
$\cos^{-1}(\frac{1}{\sqrt{3}})$ |
The correct answer is Option (3) → $\cos^{-1}(\frac{1}{\sqrt{3}})$ Let the slant height of the right circular cone be $l$ (constant). Let the semi-vertical angle be $\theta$. Radius of base, $r = l \sin \theta$ Height, $h = l \cos \theta$ Volume of cone: $V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (l \sin \theta)^2 (l \cos \theta) = \frac{1}{3} \pi l^3 \sin^2 \theta \cos \theta$ Maximize $V$ w.r.t $\theta$: $\frac{dV}{d\theta} = \frac{1}{3} \pi l^3 \frac{d}{d\theta} (\sin^2 \theta \cos \theta)$ Calculate derivative: $\frac{d}{d\theta} (\sin^2 \theta \cos \theta) = 2 \sin \theta \cos \theta \cdot \cos \theta + \sin^2 \theta \cdot (-\sin \theta) = 2 \sin \theta \cos^2 \theta - \sin^3 \theta$ Set derivative equal to zero for maximum: $2 \sin \theta \cos^2 \theta - \sin^3 \theta = 0$ $\sin \theta (2 \cos^2 \theta - \sin^2 \theta) = 0$ Either: $\sin \theta = 0$ (which gives trivial solution $\theta = 0$) or $2 \cos^2 \theta - \sin^2 \theta = 0$ Using $\sin^2 \theta + \cos^2 \theta = 1$, substitute: $2 \cos^2 \theta - (1 - \cos^2 \theta) = 0$ $\Rightarrow 2 \cos^2 \theta - 1 + \cos^2 \theta = 0$ $\Rightarrow 3 \cos^2 \theta = 1$ $\Rightarrow \cos^2 \theta = \frac{1}{3}$ $\Rightarrow \cos \theta = \frac{1}{\sqrt{3}}$ Therefore: The semi-vertical angle $\theta = \cos^{-1} \frac{1}{\sqrt{3}}$ |