A closed circuit in the form of a regular hexagon of side a carries a current I. What is the magnetic field at the centre of the hexagon? |
0 $\frac{\sqrt{3}μ_0I}{2πa}$ $\frac{2\sqrt{3}μ_0I}{πa}$ $\frac{\sqrt{3}μ_0I}{πa}$ |
$\frac{\sqrt{3}μ_0I}{πa}$ |
The correct answer is Option (4) → $\frac{\sqrt{3}μ_0I}{πa}$ The correct expression for the magnetic field at the center of the hexagon is - $B=\sqrt{3}\frac{μ_0I}{πa}$ from right angled ΔAMO, $\tan\phi=\frac{AM}{OM}$ $⇒\tan 30°=\frac{a/2}{r}$ $⇒r=\frac{a}{2\tan 30}=\frac{\sqrt{3}a}{2}$ Magnetic field along AB, $B_{AB}=\frac{μ_0}{4π}×\frac{I}{r}(\sin θ+\sin θ)$ $B_{AB}=\frac{μ_02I}{4πr}\sin 30°$ $=\frac{μ_0I\sqrt{3}}{πa}$ |