An atom has a positively charge point nucleus of charge Ze surrounded by a uniform density of negative charge upto a radius R. The atom is taken as neutral. The electric field at a distance r<R from the nucleus is given by- |
$\frac{Ze}{4πε_0}\left[\frac{1}{r^3}\right]$ $\frac{Ze}{4πε_0}\left[\frac{1}{r^2}-\frac{r}{R^3}\right]$ $\frac{Ze^2}{4πε_0}\left[\frac{1}{r^3}-\frac{1}{R^3}\right]$ $\frac{Ze}{4πε_0}\left[\frac{1}{r^4}\right]$ |
$\frac{Ze}{4πε_0}\left[\frac{1}{r^2}-\frac{r}{R^3}\right]$ |
The correct answer is Option (2) → $\frac{Ze}{4πε_0}\left[\frac{1}{r^2}-\frac{r}{R^3}\right]$ The charge density is related to total charge and the volume of the sphere, $ρ= \frac{-Ze}{\frac{4}{3} \pi R^3}$ Charge enclosed by the Gaussian surface at distance r, $Q_{enc}=Ze+ρ.\frac{4}{3} \pi r^3$ Substituting $ρ$ in this equation, $Q_{enc}=Ze\left(1-\frac{r^3}{R^3}\right)$ According to Gauss's law, $E.4\pi r^2=\frac{Q_{enc}}{ε_0}$ $E=\frac{Ze}{\frac{4}{3} \pi r^2ε_0}\left(1-\frac{r^3}{R^3}\right)$ |