Integrating factor $\frac{dy}{dx}+ycotx=2x+x^2cot x (x≠0)$ is : |
cosx -sinx sinx -cosx |
sinx |
Given differential equation: $\frac{dy}{dx}+y\cot x=2x+x^{2}\cot x,\ (x\neq0)$ This is linear form: $\frac{dy}{dx}+P(x)y=Q(x)$ with $P(x)=\cot x$. Integrating factor $=\exp\!\Big(\int P(x)\,dx\Big)=\exp\!\Big(\int \cot x\,dx\Big)$ $=\exp(\ln|\sin x|)=\sin x$ Integrating factor = $\sin x$ |