Arrange $k, \alpha , \beta $ and $\mu $ in descending order : A. If $y=\frac{1}{x}$ then $\left[\frac{d^2y}{dx^2}\right]_{x=\frac{1}{2}}=k$ A. If $y=\frac{2}{x}$ then $\left[\frac{d^2y}{dx^2}\right]_{x=2}=\alpha $ C. If $y=\frac{1}{x+1}$ then $\left[\frac{d^2y}{dx^2}\right]_{x=1}=\beta $ D. If $y=log_e(x+1)$ then $\left[\frac{d^2y}{dx^2}\right]_{x=1}=\mu $ Choose the correct answer from the option sgiven below : |
$k > \alpha > \beta = \mu $ $k > \beta > \mu ≥ \alpha $ $\alpha > \beta = k > \mu $ $k > \alpha > \beta > \mu $ |
$k > \alpha > \beta > \mu $ |
The correct answer is Option (4) → $k > \alpha > \beta > \mu $ (A) $y=\frac{1}{x}$ $⇒\frac{dy}{dx}=-\frac{1}{x^2}⇒\frac{d^2y}{dx^2}=\frac{2}{x^3}$ $\left[\frac{d^2y}{dx^2}\right]_{x=\frac{1}{2}}=16=k$ (B) $y=\frac{2}{x}$ $⇒\frac{d^2y}{dx^2}=\frac{4}{x^{-3}}$ $⇒\left[\frac{d^2y}{dx^2}\right]_{x=2}=\frac{4}{2^3}=\frac{1}{2}=\alpha $ (C) $y=\frac{1}{x+1}$ $⇒\frac{d^2y}{dx^2}=\frac{2}{(x+1)^3}$ $⇒\left[\frac{d^2y}{dx^2}\right]_{x=1}=\frac{2}{8}=\frac{1}{4}=\beta $ (D) $y=log_e(x+1)$ $⇒\frac{d^2y}{dx^2}=-\frac{1}{(x+1)^2}=-\frac{1}{4}=\mu$ $⇒k > \alpha > \beta > \mu $ |