An equiconvex lens has a focal length $\frac{2}{3}$ times the radius of curvature of either surface. The refractive index of the material of the lens is: |
1.29 1.52 1.63 1.75 |
1.75 |
The correct answer is Option (4) → 1.75 For a thin lens, lens maker's formula is: $\frac{1}{f} = (n - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$ For an equiconvex lens: $R_1 = R$, $R_2 = -R$ (convex surfaces opposite direction) So, $\frac{1}{f} = (n - 1) \left( \frac{1}{R} - \frac{-1}{R} \right) = (n - 1) \left( \frac{2}{R} \right)$ Given $f = \frac{2}{3} R$, then $\frac{1}{f} = \frac{3}{2R}$ Equating: $\frac{3}{2R} = (n - 1) \frac{2}{R} \text{ implies } n - 1 = \frac{3}{4} \text{ implies } n = \frac{7}{4} = 1.75$ Final Answer: $n = 1.75$ |