If $x=t^4, y=t$, then $\frac{d^2 y}{d x^2}$ is given by ________. |
$-\frac{3}{16 t^7}$ $\frac{3}{16 t^7}$ $-\frac{3}{4 t^4}$ $\frac{3}{16 t^4}$ |
$-\frac{3}{16 t^7}$ |
The correct answer is Option (1) → $-\frac{3}{16 t^7}$ $x=t^4$ and $y=t$ $⇒\frac{dx}{dt}=4t^3$ and $⇒\frac{dy}{dt}=\frac{1}{4t^3}$ $⇒\frac{dy}{dx}=\frac{1}{4t^3}$ $⇒\frac{d^2y}{d x^2}=\frac{-3}{4t^3}×\frac{dt}{dx}$ $=\frac{-3}{4t^3}×\frac{1}{4t^3}$ $=-\frac{3}{16 t^3}$ |