Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Continuity and Differentiability

Question:

If $x=t^4, y=t$, then $\frac{d^2 y}{d x^2}$ is given by ________.

Options:

$-\frac{3}{16 t^7}$

$\frac{3}{16 t^7}$

$-\frac{3}{4 t^4}$

$\frac{3}{16 t^4}$

Correct Answer:

$-\frac{3}{16 t^7}$

Explanation:

The correct answer is Option (1) → $-\frac{3}{16 t^7}$

$x=t^4$ and $y=t$

$⇒\frac{dx}{dt}=4t^3$ and $⇒\frac{dy}{dt}=\frac{1}{4t^3}$

$⇒\frac{dy}{dx}=\frac{1}{4t^3}$

$⇒\frac{d^2y}{d x^2}=\frac{-3}{4t^3}×\frac{dt}{dx}$

$=\frac{-3}{4t^3}×\frac{1}{4t^3}$

$=-\frac{3}{16 t^3}$