Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

If $y =\sqrt{x+\sqrt{x+\sqrt{x+.....}}}$, then

Options:

$(2y + 1)\frac{dy}{dx} + 3\sqrt{x} = 0$

$3\frac{dy}{dx} + 3y^2= 0$

$3x\frac{dy}{dx} +(2y + 1)= 0$

$(2y - 1)\frac{dy}{dx} -1= 0$

Correct Answer:

$(2y - 1)\frac{dy}{dx} -1= 0$

Explanation:

The correct answer is Option (4) → $(2y - 1)\frac{dy}{dx} -1= 0$

Given: $y = \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}}$

Let $y = \sqrt{x + y}$

Square both sides: $y^2 = x + y \Rightarrow y^2 - y - x = 0$

Differentiating both sides w.r.t $x$:

$2y \frac{dy}{dx} - \frac{dy}{dx} - 1 = 0 \Rightarrow (2y - 1)\frac{dy}{dx} = 1$