The area (in square units) of the region bounded by curves $y=x$ and $y=x^3$ is: |
0 1/2 1/4 4 |
1/2 |
The correct answer is Option (2) → 1/2 $y=x$ ...(1) $y=x^3$ ...(2) from (1) and (2), $x=x^3$ $⇒x(x-1)(x+1)=0$ $⇒x=-1,0,1$ $A=\int\limits_{-1}^1(x-x^3)dx$ $=\left[\int x\,dx-\int x^3\,dx\right]_{-1}^1$ $=\left[\frac{x^2}{2}-\frac{x^4}{4}\right]_{-1}^1$ $=\frac{1}{2}$ sq. units |