Probability distribution of random variable X is
Then the value of E(X) is |
0 $\frac{10}{11}$ $-\frac{10}{11}$ $-\frac{11}{10}$ |
0 |
The correct answer is Option (1) → 0 Given probability distribution: $X$: -2, -1, 0, 1, 2 $P(X)$: $\frac{2}{11}, \frac{1}{11}, \frac{4}{11}, \frac{3}{11}, \frac{1}{11}$ Expected value $E(X) = \sum X \cdot P(X)$ $E(X) = (-2)\cdot \frac{2}{11} + (-1)\cdot \frac{1}{11} + 0 \cdot \frac{4}{11} + 1 \cdot \frac{3}{11} + 2 \cdot \frac{1}{11}$ $E(X) = \frac{-4 - 1 + 0 + 3 + 2}{11} = \frac{0}{11} = 0$ |