Match List-I with List-II
Choose the correct answer from the options given below: |
(A)-(I), (B)-(IV), (C)-(II), (D)-(III) (A)-(I), (B)-(II), (C)-(III), (D)-(IV) (A)-(IV), (B)-(III), (C)-(II), (D)-(I) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) |
(A)-(III), (B)-(IV), (C)-(I), (D)-(II) |
The correct answer is Option (4) → (A)-(III), (B)-(IV), (C)-(I), (D)-(II) Given: (A) A(adj A) Property: A(adj A) = |A| I → determinant is $|A(adj A)| = |A|^n$, but the expression itself equals |A|I. So, (A) matches (III) (B) |adj A| Property: Determinant of adjoint: $|adj A| = |A|^{n-1}$, where n is the order of matrix. So, (B) matches (IV) (C) $|A^{-1}|$ Property: Determinant of inverse: $|A^{-1}| = 1/|A|$. So, (C) matches (I) (D) |A(adj A)| Property: $|A(adj A)| = |A|^n$. So, (D) matches (II) |