If $8+3x < |8+3x|, x\in R,$ then x lies in : |
(-∞, ∞) $\left(-∞, \frac{-3}{8}\right)$ $\left(-∞, \frac{-8}{3}\right)$ $\left(-∞, \frac{8}{3}\right)$ |
$\left(-∞, \frac{-8}{3}\right)$ |
The correct answer is Option (3) → $\left(-∞, \frac{-8}{3}\right)$ CASE 1: $8+3x>0$ $⇒8+3x<8+3x$ $⇒0<0$ This is never true, no solution. CASE 2: $8+3x<0$ $⇒8+3x<-(8+3x)$ $⇒8+3x+3x<-8$ $⇒6x<-16$ $⇒x<\frac{-8}{3}$ |