A long straight wire of radius 'a' carries a steady current 'I'. The current is uniformly distributed across its area of cross- section. The ratio of magnitude of magnetic fields $B_1$ at a distance a/2 and $B_2$ at a distance 2a from the axis of the wire. |
1 : 2 1 : 1 2 : 1 4 : 1 |
1 : 1 |
The correct answer is Option (2) → 1 : 1 Magnetic field inside the wire (r < a, uniformly distributed current): $B_\text{inside} = \frac{\mu_0 I r}{2 \pi a^2}$ Magnetic field outside the wire (r ≥ a): $B_\text{outside} = \frac{\mu_0 I}{2 \pi r}$ Given: $B_1$ at $r = a/2$ (inside): $B_1 = \frac{\mu_0 I (a/2)}{2 \pi a^2} = \frac{\mu_0 I}{4 \pi a}$ $B_2$ at $r = 2a$ (outside): $B_2 = \frac{\mu_0 I}{2 \pi (2a)} = \frac{\mu_0 I}{4 \pi a}$ Ratio: $\frac{B_1}{B_2} = \frac{\mu_0 I / 4 \pi a}{\mu_0 I / 4 \pi a} = 1$ Final Answer: $B_1 : B_2 = 1 : 1$ |