Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Probability

Question:

Match List-I with List-II

Let A and B be any two events

List-I

List-II

(A) $P (A')$

(I) $\frac{P(A∩B)}{P(A)};P(A)≠ 0$

(B) $P (\phi)$

(II) $\frac{P(A∩B)}{P(B)};P(B)≠ 0$

(C) $P (A|B)$

(III) $1-P(A)$

(D) $P (B|A)$

(IV) 0

Choose the correct answer from the options given below:

Options:

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

(A)-(III), (B)-(IV), (C)-(II), (D)-(I)

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Correct Answer:

(A)-(III), (B)-(IV), (C)-(II), (D)-(I)

Explanation:

The correct answer is Option (3) → (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

List-I

List-II

(A) $P (A')$

(III) $1-P(A)$

(B) $P (\phi)$

(IV) 0

(C) $P (A|B)$

(II) $\frac{P(A∩B)}{P(B)};P(B)≠ 0$

(D) $P (B|A)$

(I) $\frac{P(A∩B)}{P(A)};P(A)≠ 0$

(A)

Complement of an event.

$A' \text{ denotes the complement of } A.$

$A\cup A' = S,\quad A\cap A' = \emptyset$

By finite additivity,

$P(A)+P(A')=P(S)=1$

Therefore

$P(A')=1-P(A)$

Match: (A) → (III)

(B)

Null (empty) event.

By the probability axioms, the empty set has probability zero:

$P(\emptyset)=0$

Match: (B) → (IV)

(C)

Conditional probability of A given B (requirement: $P(B)\neq 0$).

Definition:

$P(A\mid B)=\frac{P(A\cap B)}{P(B)}$

Equivalently $P(A\cap B)=P(A\mid B)\,P(B)$.

Match: (C) → (II)

(D)

Conditional probability of B given A (requirement: $P(A)\neq 0$).

Definition:

$P(B\mid A)=\frac{P(A\cap B)}{P(A)}$

Match: (D) → (I)