Match List-I with List-II Let A and B be any two events
Choose the correct answer from the options given below: |
(A)-(III), (B)-(IV), (C)-(I), (D)-(II) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (A)-(IV), (B)-(III), (C)-(II), (D)-(I) |
(A)-(III), (B)-(IV), (C)-(II), (D)-(I) |
The correct answer is Option (3) → (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(A) Complement of an event. $A' \text{ denotes the complement of } A.$ $A\cup A' = S,\quad A\cap A' = \emptyset$ By finite additivity, $P(A)+P(A')=P(S)=1$ Therefore $P(A')=1-P(A)$ Match: (A) → (III) (B) Null (empty) event. By the probability axioms, the empty set has probability zero: $P(\emptyset)=0$ Match: (B) → (IV) (C) Conditional probability of A given B (requirement: $P(B)\neq 0$). Definition: $P(A\mid B)=\frac{P(A\cap B)}{P(B)}$ Equivalently $P(A\cap B)=P(A\mid B)\,P(B)$. Match: (C) → (II) (D) Conditional probability of B given A (requirement: $P(A)\neq 0$). Definition: $P(B\mid A)=\frac{P(A\cap B)}{P(A)}$ Match: (D) → (I) |