Let $y=\log _x 5$, then $\frac{d y}{d x}=$ |
$\frac{\log 5}{x(\log x)^2}$ $\frac{-\log 5}{x(\log x)^2}$ $\frac{-\log 5}{(\log x)^2}$ $\frac{\log 5}{x}$ |
$\frac{-\log 5}{x(\log x)^2}$ |
The correct answer is Option (2) - $\frac{-\log 5}{x(\log x)^2}$ $y=\log _x 5=\frac{\log 5}{\log x}$ $\frac{dy}{dx}=\frac{-\log 5}{(\log x)^2}×\frac{1}{x}$ |