The area (in square units) of the region bounded by the curves $3y^2 = ax, y = a, a > 0$ and y-axis is: |
$a$ $3a$ $2a^2$ $a^2$ |
$a^2$ |
The correct answer is Option (4) → $a^2$ Region: $x=\frac{3}{a}y^{2},\;y=a,\;x=0,\;y\ge0$ Area $= \displaystyle\int_{0}^{a}\left(\frac{3}{a}y^{2}-0\right)\,dy$ $=\frac{3}{a}\int_{0}^{a}y^{2}\,dy=\frac{3}{a}\left[\frac{y^{3}}{3}\right]_{0}^{a}=\frac{3}{a}\cdot\frac{a^{3}}{3}=a^{2}$ |