The curve $\frac{x^n}{a^n}+\frac{y^n}{b^n}=2$ touches the line $\frac{x}{a}+\frac{y}{b}=2$ at the point |
$(b, a)$ $(a, b)$ $(1,1)$ $\left(\frac{1}{b}, \frac{1}{a}\right)$ |
$(a, b)$ |
We have, $\frac{x^n}{a^n}+\frac{y^n}{b^n}=2$ .......(i) Differentiating with respect to x, we get $n \frac{x^{n-1}}{a^n}+n \frac{y^{n-1}}{b^n} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{b^n}{a^n}\left(\frac{x}{y}\right)^{n-1}$ Suppose the line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve (i) at $P(\alpha, \beta)$. The equation of the tangent at $P(\alpha, \beta)$ is $y-\beta=-\frac{b^n}{a^n}\left(\frac{\alpha}{\beta}\right)^{n-1} (x-\alpha)$ $\Rightarrow a^n \beta^{n-1} y-a^n \beta^n=-b^n \alpha^{n-1} x+b^n \alpha^n$ $\Rightarrow \left(b^n \alpha^{n-1}\right) x+\left(a^n \beta^{n-1}\right) y=a^n \beta^n+b^n \alpha^n$ $\Rightarrow \left(b^n \alpha^{n-1}\right) x+\left(a^n \beta^{n-1}\right) y=2 a^n b^n$ [∵ (α, β) lies on (i)] Comparing this equation with $\frac{x}{a}+\frac{y}{b}=2$, we get $\frac{a b^n \alpha^{n-1}}{a^n b^n}=\frac{b a^n \beta^{n-1}}{a^n b^n}=\frac{2}{2}$ $\Rightarrow \left(\frac{\alpha}{a}\right)^{n-1}=\left(\frac{\beta}{b}\right)^{n-1}=1$ $\Rightarrow \frac{\alpha}{a}=\frac{\beta}{b}=1 \Rightarrow \alpha=a, \beta=b$ |