The distance between the origin and the tangent to the curve $y=e^{2 x}+x^2$ drawn at the point x = 0 is |
$\frac{1}{\sqrt{5}}$ $\frac{2}{\sqrt{5}}$ $\frac{-1}{\sqrt{5}}$ $\frac{2}{\sqrt{3}}$ |
$\frac{1}{\sqrt{5}}$ |
Putting x = 0 in the given curve, we obtain y = 1 So, the given point is (0, 1) Now, $y=e^{2 x}+x^2 \Rightarrow \frac{d y}{d x}=2 e^{2 x}+2 x \Rightarrow\left(\frac{d y}{d x}\right)_{(0,1)}=2$ The equation of the tangent at (0, 1) is $y-1=2(x-0) \Rightarrow 2 x-y+1=0$ ..........(i) ⇒ Required distance = Length of the ⊥ from (0, 0) on (i) ⇒ Required distance = $\frac{1}{\sqrt{5}}$ |