Area of a rectangle having vertices P, Q, R and S with position vectors $-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ and $-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ respectively is: |
1 2 $\frac{1}{2}$ 4 |
2 |
The correct answer is Option (2) - 2 $\vec{QP}=\vec P-\vec Q=2\hat i$ $\vec{QR}=\vec R-\vec Q=-\hat j$ area = $|\vec{QP}×\vec{QR}|=2$ sq. units |