Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}$ $=\max \{g(x): x \in[0,1]\}$, the correct statement (s) is (are)

(a) $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$

(b) $(f(c))^2+f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$

(c) $(f(c))^2+3 f(c)=(g(c))^2+g(c)$ for some $c \in(0,1]$

(d) $(f(c))^2=(g(c))^2$ for some $c \in[0,1]$

Options:

(a), (d)

(a), (b)

(b), (d)

(c), (d)

Correct Answer:

(a), (d)

Explanation:

Since f(x) and g(x) are continuous on [0, 1]. So, they attain their maximum and minimum values in [0, 1]. Suppose f(x) and g(x) attain their maximum values at $x_1$ and $x_2$ respectively. It is given that $f\left(x_1\right)=g\left(x_2\right)$.

Let h(x) = f(x) - g(x). Then, h(x) is continuous on [0, 1] such that

$h\left(x_1\right)=f\left(x_1\right)-g\left(x_1\right) \geq 0$           $\left[\begin{array}{l}∵ f\left(x_1\right)=g\left(x_2\right) \geq g\left(x_1\right) \\ ∴ f\left(x_1\right)-g\left(x_1\right) \geq 0\end{array}\right]$

and, $h\left(x_2\right)=f\left(x_2\right)-g\left(x_2\right) \leq 0$                $\left[\begin{array}{l}∵ g\left(x_2\right)=f\left(x_1\right) \geq f\left(x_2\right) \\ ∴ f\left(x_2\right)-g\left(x_2\right) \leq 0\end{array}\right]$

Therefore, there exists $c \in(0,1)$ such that

$h(c)=0 \Rightarrow f(c)=g(c)$

Clearly, f(c) = g(c) satisfy options (a) and (d).