Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

If $I=\int x^{27}\left(6 x^2+5 x+4\right)\left(x^2+x+1\right)^6 d x=f(x)+C$, then $f(x)$ is equal to

Options:

$\frac{1}{7}\left(x^6+x^5+x^4\right)^7$

$\frac{1}{7}\left(6 x^5+5 x^4+4 x^3\right)^7$

$\frac{1}{7}\left(6 x^6+5 x^5+4 x^4\right)^7$

$\frac{1}{7}\left(x^5+x^4+x^3\right)^7$

Correct Answer:

$\frac{1}{7}\left(x^6+x^5+x^4\right)^7$

Explanation:

We have $I=\int x^{27}\left(6 x^2+5 x+4\right)\left(x^2+x+1\right)^6 d x$

$\Rightarrow I=\int\left(6 x^5+5 x^4+4 x^3\right)\left(x^6+x^5+x^4\right)^6 d x$

$\Rightarrow I=\int\left(x^6+x^5+x^4\right)^6 d\left(x^6+x^5+x^4\right) = \frac{1}{7}\left(x^6+x^5+x^4\right)^7+C$

Hence, $f(x)=\frac{1}{7}\left(x^6+x^5+x^4\right)^7$.