The value of the integral $I = \int\limits_0^1 \frac{1}{\sqrt{x^2 + 2x + 3}} \, dx$ is: |
\( \log\left( \frac{2 + \sqrt{6}}{1 - \sqrt{3}} \right) \) \( \log\left( \frac{2 + \sqrt{6}}{1 + \sqrt{3}} \right) \) \( \log\left( \frac{5 + \sqrt{6}}{1 + \sqrt{3}} \right) \) \( \log(5 + \sqrt{6}) \) |
\( \log\left( \frac{2 + \sqrt{6}}{1 + \sqrt{3}} \right) \) |
The correct answer is Option (2) → \( \log\left( \frac{2 + \sqrt{6}}{1 + \sqrt{3}} \right) \) Compute $I=\int_{0}^{1} \frac{dx}{\sqrt{x^2+2x+3}}$. Complete the square: $x^2+2x+3=(x+1)^2+2$. Let $u=x+1 \Rightarrow du=dx$. When $x=0$, $u=1$; when $x=1$, $u=2$. Thus $I=\int_{1}^{2} \frac{du}{\sqrt{u^2+2}}=\int_{1}^{2} \frac{du}{\sqrt{u^2+(\sqrt{2})^2}}$. Standard form: $\displaystyle \int \frac{du}{\sqrt{u^2+a^2}}=\ln\!\left|u+\sqrt{u^2+a^2}\right|+C$. Apply with $a=\sqrt{2}$: $I=\left[\ln\!\left(u+\sqrt{u^2+2}\right)\right]_{1}^{2}$ $I=\ln\!\left(2+\sqrt{4+2}\right)-\ln\!\left(1+\sqrt{1+2}\right)$ $I=\ln\!\left(2+\sqrt{6}\right)-\ln\!\left(1+\sqrt{3}\right)=\ln\!\left(\frac{2+\sqrt{6}}{1+\sqrt{3}}\right)$ Result: $\displaystyle I=\ln\!\left(\frac{2+\sqrt{6}}{1+\sqrt{3}}\right)$ |