If x1001 + \(\frac{1}{x^{1001}}\) = 15 Find x1001 - \(\frac{1}{x^{1001}}\) = ? |
\(\sqrt {229}\) \(\sqrt {233}\) \(\sqrt {221}\) \(\sqrt {227}\) |
\(\sqrt {221}\) |
Formula → If x + \(\frac{1}{x}\) = a Then, x - \(\frac{1}{x}\) = \(\sqrt {a^2 - 4}\) Given, x1001 + \(\frac{1}{x^{1001}}\) = 15 So, x1001 - \(\frac{1}{x^{1001}}\) = \(\sqrt {(15)^2 - 4}\) = \(\sqrt {221}\) |