A cell of constant emf is first connected to a resistance $R_1$ and then connected to a resistance $R_2$. If power delivered in both cases is same, then the internal resistance of the cell is |
$\sqrt{R_1R_2}$ $\sqrt{\frac{R_1}{R_2}}$ $\frac{R_1-R_2}{2}$ $\frac{R_1+R_2}{2}$ |
$\sqrt{R_1R_2}$ |
The correct answer is Option (1) → $\sqrt{R_1R_2}$ Let emf of the cell = $E$, internal resistance = $r$ Power across $R = \frac{E^2 R}{(R+r)^2}$ Given: Power across $R_1$ = Power across $R_2$ $\frac{E^2 R_1}{(R_1 + r)^2} = \frac{E^2 R_2}{(R_2 + r)^2}$ Cancel $E^2$: $\frac{R_1}{(R_1 + r)^2} = \frac{R_2}{(R_2 + r)^2}$ Cross-multiply: $R_1(R_2 + r)^2 = R_2(R_1 + r)^2$ Expanding: $R_1(R_2^2 + 2R_2r + r^2) = R_2(R_1^2 + 2R_1r + r^2)$ $R_1R_2^2 + 2R_1R_2r + R_1r^2 = R_2R_1^2 + 2R_1R_2r + R_2r^2$ Cancel $2R_1R_2r$: $R_1R_2^2 + R_1r^2 = R_2R_1^2 + R_2r^2$ Rearrange: $R_1R_2^2 - R_2R_1^2 = R_2r^2 - R_1r^2$ $R_1R_2(R_2 - R_1) = r^2(R_2 - R_1)$ If $R_1 \neq R_2$, divide by $(R_2 - R_1)$: $R_1R_2 = r^2$ $r = \sqrt{R_1R_2}$ Final Answer: $r = \sqrt{R_1R_2}$ |