If A and Bare two independent events such that $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{5}$, then which of the followingis incorrect ? |
$P(A ∪ B)= 3/5$ $P(A/B)=1/2$ $P(A/A ∪ B)= 5/6$ $P(A ∩ B)/\overline{A} ∪ \overline{B}= 1/2$ |
$P(A ∩ B)/\overline{A} ∪ \overline{B}= 1/2$ |
Since A and B are independent events. Therefore, $P(A ∩ B)= P(A) P(B)=\frac{1}{2}× \frac{1}{5}=\frac{1}{10}$ and, $P(A/B)= P(A)=\frac{1}{2}$ So, alternative (b) is correct. Now, $P(A ∪ B)= P(A) +P(B)-P(A ∩ B)=\frac{1}{2}+\frac{1}{5}-\frac{1}{10}=\frac{3}{5}$ So, alternative (a) is correct. Now, $P(A/ A ∪ B)=\frac{P[A ∩(A∪ B)]}{P(A∪ B)}=\frac{P(A)}{P(A∪ B) }=\frac{1/2}{3/5}=\frac{5}{6}$ So, alternative (c) is correct. and, $P(A ∩B/ \overline{A} ∪ \overline{B})= P(A ∩ B/ (\overline{A ∩ B}))=0$ So, alternatives (d) is not correct. |