If A is an invertible matrix of order 2, then $\text{det ((adj A)}^{-1})$ is equal to |
0 1 $\text{det A}$ $\frac{1}{\text{det A}}$ |
$\frac{1}{\text{det A}}$ |
The correct answer is Option (4) → $\frac{1}{\text{det A}}$ Given: A is an invertible matrix of order 2 Property used: For an invertible matrix $A$ of order $n$, $\text{adj}(A) = (\det A) \cdot A^{-1}$ $\Rightarrow (\text{adj} A)^{-1} = \frac{1}{\det A} \cdot A$ Therefore, $\det((\text{adj} A)^{-1}) = \det\left(\frac{1}{\det A} \cdot A\right)$ $= \left(\frac{1}{\det A}\right)^2 \cdot \det A = \frac{1}{\det A}$ Hence, $\det((\text{adj} A)^{-1}) = \frac{1}{\det A}$ |