Area of the region bounded by $y=-1, y=2, x=y^3$ and $x=0$ is: |
$\frac{13}{4}$ sq. units $\frac{15}{4}$ sq. units $\frac{17}{4}$ sq. units $\frac{19}{4}$ sq. units |
$\frac{17}{4}$ sq. units |
The correct answer is Option (3) - $\frac{17}{4}$ sq. units area = $-\int\limits_{-1}^0y^3dy+\int\limits_0^2y^3dy$ $⇒-\left[\frac{y^4}{4}\right]_{-1}^0+\left[\frac{y^4}{4}\right]_0^2$ $=\frac{16}{4}+\frac{1}{4}=\frac{17}{4}$ |