Let $P=\begin{bmatrix}5 & 2\\7 & 4\end{bmatrix}, Q= \begin{bmatrix}2 & 5\\3 & 8\end{bmatrix}$ and $R= \begin{bmatrix}2 & -1\\3 & 4\end{bmatrix}$, then the matrix S such that $QS- RP= 0, $ will be : |
$\begin{bmatrix}16 & 8\\56 & 32\end{bmatrix}$ $\begin{bmatrix}3 & -14\\4 & 17\end{bmatrix}$ $\begin{bmatrix}-1 & -13\\36 & 17\end{bmatrix}$ $\begin{bmatrix}-191 & -110\\77 & 44\end{bmatrix}$ |
$\begin{bmatrix}-191 & -110\\77 & 44\end{bmatrix}$ |
The correct answer is Option (4) → $\begin{bmatrix}-191 & -110\\77 & 44\end{bmatrix}$ $QS-RP=0$ $QS=RP$ $S=Q^{-1}RP$ [Pre-multiplying by Q] $=\begin{bmatrix}8 & -5\\-3 & 2\end{bmatrix} \begin{bmatrix}2 & -1\\3 & 4\end{bmatrix}\begin{bmatrix}5 & 2\\7 & 4\end{bmatrix}$ $=\begin{bmatrix}-191 & -110\\77 & 44\end{bmatrix}$ |