The area (in square units) enclosed between the curve $x^2-4y$ and the line $x = y$ is: |
8 $\frac{16}{3}$ 16 $\frac{8}{3}$ |
$\frac{8}{3}$ |
The correct answer is Option (4) → $\frac{8}{3}$ Given, $x^2-4y=0$ ...(1) $x=y$ ....(2) from (1) and (2), $x^2-4x=0$ $x(x-4)=0$ $x=0$ or $x=4$ So, the points of intersection are (0, 0) and (4, 4). $A=\int\limits_0^4\left(x-\frac{x^2}{4}\right)dx$ $=\int\limits_0^4x\,dx-\int\limits_0^4\frac{x^2}{2}dx$ $=8-\frac{16}{3}=\frac{8}{3}$ |