The shortest wavelength in the Lyman series of hydrogen spectrum is 912 Å. The shortest wavelength present in Paschen series of spectral lines will be: |
8208 Å 6566 Å 3648 Å 14592 Å |
8208 Å |
The correct answer is Option (1) → 8208 Å Using Rydberg formula, $\frac{1}{λ}=R_H\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$ Lyman series, $n_1=1$ Paschen series, $n_2=3$ Shortest wavelength corresponds to $n_2=∞$ $\frac{1}{λ_{min}_L}=R_H\left(1-\frac{1}{∞}\right)=R_H=\frac{1}{912Å}$ $\frac{1}{λ_{min}_P}=R_H\left(\frac{1}{3^2}-\frac{1}{∞}\right)$ $⇒λ_{min}_P=9×912$ $=8208 Å$ |