$\int\limits_0^{\pi/2}\sqrt{1-\sin x}dx$ is equal to |
$2(\sqrt{2}-1)$ $2(\sqrt{2}+1)$ 2 $2\sqrt{2}$ |
$2(\sqrt{2}-1)$ |
The correct answer is Option (1) → $2(\sqrt{2}-1)$ Evaluate the definite integral: $\int_0^{\frac{\pi}{2}} \sqrt{1 - \sin x} \, dx$ Use identity: $1 - \sin x = \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2$ So: $\sqrt{1 - \sin x} = \left|\cos \frac{x}{2} - \sin \frac{x}{2}\right|$ For $x \in [0, \frac{\pi}{2}]$, $\cos \frac{x}{2} \ge \sin \frac{x}{2}$, so absolute value is not required. Thus: $\sqrt{1 - \sin x} = \cos \frac{x}{2} - \sin \frac{x}{2}$ Therefore: $\int_0^{\frac{\pi}{2}} \sqrt{1 - \sin x} \, dx = \int_0^{\frac{\pi}{2}} \left( \cos \frac{x}{2} - \sin \frac{x}{2} \right) dx$ Use substitution: $u = \frac{x}{2} \Rightarrow dx = 2du$, and when $x = 0 \Rightarrow u = 0$, $x = \frac{\pi}{2} \Rightarrow u = \frac{\pi}{4}$ Then: $\int_0^{\frac{\pi}{2}} \left( \cos \frac{x}{2} - \sin \frac{x}{2} \right) dx = 2 \int_0^{\frac{\pi}{4}} (\cos u - \sin u)\, du$ $= 2 \left[ \sin u + \cos u \right]_0^{\frac{\pi}{4}}$ $= 2 \left( \sin \frac{\pi}{4} + \cos \frac{\pi}{4} - \sin 0 - \cos 0 \right)$ $= 2 \left( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 0 - 1 \right) = 2(\sqrt{2} - 1)$ |