CUET Preparation Today
CUET
-- Mathematics - Section B1
Indefinite Integration
The value of ∫1(2ax+x2)3/2dx is: |
1a2x+a√x2+2ax+c −1a2x+a√x2+2ax+c −1a32x+a√x2+2ax+c None of these |
−1a2x+a√x2+2ax+c |
∫1(2ax+x2)3/2dx [Put x + a = a sec θ ⇒ dx = a sec θ.tan θ.dθ] ∫asecθtanθa3(tan2θ)3/2dθ=1a2∫1cosθ.cos2θsin2θdθ=1a2∫cosθsin2θdθ=1a2.−1sinθ=−1a2.x+a√x2+2ax+C (Make a triangle for cosθ=ax+a and find sinθ as x+a√x2+2ax) |