If a revenue function is given by $R(x) = 2027x-1013 x^2 - 675 x^3$, then the marginal revenue function (MR) is: |
$MR=2027- 1013x-675 x^2$ $MR = 2026 – 4050 x$ $MR= 2027- 2026 x - 2025 x^2$ $MR= 1013x-2025 x^2$ |
$MR= 2027- 2026 x - 2025 x^2$ |
The correct answer is Option (3) → $MR= 2027- 2026 x - 2025 x^2$ Revenue function: R(x) = 2027x − 1013x² − 675x³ Marginal Revenue (MR) = derivative of R(x) with respect to x $MR = \frac{dR}{dx} = \frac{d}{dx}[2027x - 1013x^2 - 675x^3]$ $MR = 2027 - 2 × 1013 x - 3 × 675 x^2$ $MR = 2027 - 2026x - 2025x^2$ |