Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

If a revenue function is given by $R(x) = 2027x-1013 x^2 - 675 x^3$, then the marginal revenue function (MR) is:

Options:

$MR=2027- 1013x-675 x^2$

$MR = 2026 – 4050 x$

$MR= 2027- 2026 x - 2025 x^2$

$MR= 1013x-2025 x^2$

Correct Answer:

$MR= 2027- 2026 x - 2025 x^2$

Explanation:

The correct answer is Option (3) → $MR= 2027- 2026 x - 2025 x^2$

Revenue function: R(x) = 2027x − 1013x² − 675x³

Marginal Revenue (MR) = derivative of R(x) with respect to x

$MR = \frac{dR}{dx} = \frac{d}{dx}[2027x - 1013x^2 - 675x^3]$

$MR = 2027 - 2 × 1013 x - 3 × 675 x^2$

$MR = 2027 - 2026x - 2025x^2$