CUET Preparation Today
CUET
-- Mathematics - Section A
Applications of Derivatives
Let $f(x)=\left\{\begin{array}{l}|x-1|+a, x<1 \\ 2 x+3, x \geq 1\end{array}\right.$. If f (x) has a local minima at x = 1, then
a ≥ 5
a > 5
a > 0
none of these
Local minimum value of f(x) at x = 1, will be 5
i.e. 1 – x + a ≥ 5 at x = 1 ⇒ a ≥ 5