If A is symmetric and B is skew symmetric matrix and $A+B=\begin{bmatrix} 1 & -1\\3 & 2\end{bmatrix}$, then matrix A = _______. |
$\begin{bmatrix} 1 & 3\\1 & 2\end{bmatrix}$ $\begin{bmatrix} 1 & -1\\4 & 2\end{bmatrix}$ $\begin{bmatrix} 1 & 1\\1 & 2\end{bmatrix}$ $\begin{bmatrix} 1 & 2\\1 & 1\end{bmatrix}$ |
$\begin{bmatrix} 1 & 1\\1 & 2\end{bmatrix}$ |
The correct answer is Option (3) → $\begin{bmatrix} 1 & 1\\1 & 2\end{bmatrix}$ $A=\begin{bmatrix} a & c\\c & d\end{bmatrix},B=\begin{bmatrix} 0 & x\\-x & 0\end{bmatrix}$ $A+B=\begin{bmatrix} a+0 & c+x\\c-x & d+0\end{bmatrix}=\begin{bmatrix} 1 & -1\\3 & 2\end{bmatrix}$ $a=1,c+x=3,d=2,c-x=-1$ $c+x=3$ ...(1) $c-x=-1$ ...(2) from (1) and (2) $2c=2$ $c=1,x=2$ $A=\begin{bmatrix} 1 & 1\\1 & 2\end{bmatrix}$ |