If $a, b, c$ are positive real numbers, then the least value of $(a+b+c)(ab+bc+ca)$ is: |
1 $abc$ $9abc$ $3abc$ |
$9abc$ |
The correct answer is Option (3) → $9abc$ Consider $(a+b+c)(ab+bc+ca)$ with $a,b,c>0$. By AM–GM inequality, $a+b+c \geq 3(abc)^{\frac{1}{3}} \quad ...(1)$ Similarly, $ab+bc+ca \geq 3(abc)^{\frac{2}{3}} \quad ...(2)$ Multiplying (1) and (2), $(a+b+c)(ab+bc+ca) \geq 9abc$ Equality holds when $a=b=c$. therefore The least value of $(a+b+c)(ab+bc+ca)$ is $9abc$. |